-DIMENSIONAL GEOMETRY

IMPORTANT FORMULAE

- If direction cosines of a line are l, m, n then $l^2 + m^2 +$ $n^2 = 1$.
- Direction cosines of the line passing through two points. $P(x_1, y_1, z_1)$ and $Q(x_2, y_2, z_2)$ are $\frac{x_2 - x_1}{PQ}$,

$$\begin{aligned} \frac{y_2 - y_1}{\text{PQ}}, & \frac{z_2 - z_1}{\text{PQ}}, & \text{where PQ} \\ & = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2} \end{aligned}$$

- The numbers which are proportional to direction cosines of a line are called direction ratios of the line.
- If direction cosines of a line are *l*, *m*, *n* and direction ratios are a, b, c, then

$$l = \frac{a}{\sqrt{a^2 + b^2 + c^2}}; m = \frac{b}{\sqrt{a^2 + b^2 + c^2}}; n = \frac{c}{\sqrt{a^2 + b^2 + c^2}}$$

- If l_1 , m_1 , n_1 and l_2 , m_2 n_2 are the direction cosines of two lines and θ is the acute angle between them, then $\cos \theta = |l_1 l_2 + m_1 m_2 + n_1 n_2|$
- If a_1, b_1, c_1 and a_2, b_2, c_2 are the direction ratios of two

$$\cos \theta = \left| \frac{a_1 a_2 + b_1 b_2 + c_1 c_2}{\sqrt{a_1^2 + b_1^2 + c_1^2 \sqrt{a_2^2 + b_2^2 + c_2^2}}} \right|$$

- Equation of a line through a given point $\stackrel{\rightarrow}{a}$ and parallel to \vec{b} is $\vec{r} = \vec{a} + \lambda \vec{b}$
- Let the point be (x_1, y_1, z_1) and l, m, n be the direction ratios then equation of the line:

$$\frac{x-x_1}{l} = \frac{y-y_1}{m} = \frac{z-z_1}{n}$$

 Vector equation of the line passing through two points whose position vectors \vec{a} and \vec{b} is

$$\overrightarrow{r} = \overrightarrow{a} + \lambda(\overrightarrow{b} - \overrightarrow{a})$$

 Cartesian equations of the line passing through two points (x_1, y_1, z_1) and (x_2, y_2, z_2) are.

$$\frac{x - x_1}{x_2 - x_1} = \frac{y - y_1}{y_2 - y_1} = \frac{z - z_1}{z_2 - z_1}$$

• If θ is the acute angle between two lines $\overrightarrow{r} = \overrightarrow{a_1} + \lambda \overrightarrow{b_1}$ and $r = a_2 + \lambda b_2$, then

$$\cos \theta = \frac{\overrightarrow{b_1} \cdot \overrightarrow{b_2}}{|\overrightarrow{b_1}| |\overrightarrow{b_2}|}$$

- The shortest distance between two skew lines is a line segment which is perpendicular on both lines.
- Shortest distance, between two lines $\vec{r} = \vec{a_1} + \lambda \vec{b_1}$ and

$$\overrightarrow{r} = \overrightarrow{a_2} + \mu \overrightarrow{b_2} \text{ is } \left| \frac{(\overrightarrow{b_1} \times \overrightarrow{b_1}) \cdot (\overrightarrow{a_2} - \overrightarrow{a_1})}{|\overrightarrow{b_2} \times \overrightarrow{b_2}|} \right|$$

• Shortest distance between two lines $\frac{x-x_1}{a_1} = \frac{y-y_1}{b_1} = \frac{z-z_1}{c_1}$ and $\frac{x-x_2}{a_2} = \frac{y-y_2}{b_2} = \frac{z-z_2}{c_2}$ is

$$\frac{z_{c_1}}{c_1} \text{ and } \frac{x_{c_2}}{c_2} = \frac{y_{c_2}}{b_2} = \frac{z_{c_2}}{c_2} \text{ is}$$

$$\begin{vmatrix} x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix}$$

$$\frac{1}{\sqrt{(b_1 c_2 - b_2 c_1)^2 + (c_1 a_2 - c_2 a_1)^2 + (a_1 b_2 - a_2 b_1)^2}}$$
Distance between two parallel lines $\vec{r} = \vec{a_1} + \lambda \vec{b}$ a

• Distance between two parallel lines $\vec{r} = \vec{a_1} + \lambda \vec{b}$ and

$$\overrightarrow{r} = \overrightarrow{a_2} + \overrightarrow{\mu b} \text{ is } \left| \frac{\overrightarrow{b} \times (a_2 - a_1)}{|\overrightarrow{b}|} \right|.$$

- The equation and a plane whose distance from origin is d and normal unit vector from origin to the plane is n, in the vector form is $r \cdot n = d$.
- If l, m, n are the direction cosines of the normal to the plane which is at distance d from the origin, then equation of the plane is lx + my + nz = d.
- Let the plane passes through a point A (a). It is perpendicular to the vector N. Then equation of the plane is (r-a).N=0.
- If a plane passes through (x_1, y_1, z_1) and perpendicular to the line with direction ratios free a, b, c, then the equation of the plane is $a(x-x_1) + b(y-y_1) + c(z-z_1)$
- Equation of the plane passing through three points $(x_1, y_1, z_1), (x_2, y_2, z_2)$ and (x_3, y_3, z_3) is

$$\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ x_3 - x_1 & y_3 - y_1 & z_3 - z_1 \end{vmatrix} = 0$$

• Though three points whose position vectors are a, band c vector equation of the plane is

$$(\overrightarrow{r} - \overrightarrow{a}).[(\overrightarrow{b} - \overrightarrow{a}) \times (\overrightarrow{c} - \overrightarrow{a})] = 0$$

Equation of a plane which intersect the axes at (a, 0, 0)0), (0, b, 0) and (0, 0, c) life $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$.

$$\stackrel{\rightarrow}{r}\stackrel{\rightarrow}{(n_2+\lambda n_2)}=d_1+\lambda d_2.$$

• Equation of the plane passing through the line & intersection of planes $A_1x + B_1y + C_1z + D_1 = 0$ and A_2x $+ B_2 y + C_2 z + D_2 = 0 \text{ is}$

$$(a_1x + b_1y + c_1z + d_1) + \lambda(a_2x + b_2y + c_2z + d_2) = 0$$

• The lines $\frac{x - x_1}{a_1} = \frac{y - y_1}{b_1} = \frac{z - z_1}{c_1}$ and $\frac{x - x_2}{a_2} = \frac{y - y_2}{b_2}$

$$= \frac{z - z_2}{c_2} \text{ are coplanar, if } \begin{vmatrix} x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ a_1 & b_1 & c_1 \\ a_2 & b_1 & c_2 \end{vmatrix} = 0$$

 The angles between the two planes is the angle between their normals. The angle q between the planes $\stackrel{\rightarrow}{r.n_1}$ = d_1 and $\stackrel{\rightarrow}{r.n_2}$ = d_2 is given by

$$\theta = \cos^{-1} \frac{|\stackrel{\rightarrow}{n_1} . \stackrel{\rightarrow}{n_2}|}{|\stackrel{\rightarrow}{n_2}| . |\stackrel{\rightarrow}{n_1}|}.$$

• Let the line and plane be $\overrightarrow{r} = \overrightarrow{a} + \lambda \overrightarrow{b}$ and $\overrightarrow{r} \cdot \overrightarrow{n} = d$ respectively and θ be the angle between the plane and the line, then

$$\sin \theta = \frac{\overrightarrow{b} \cdot \overrightarrow{n}}{|\overrightarrow{b}| |n|}$$

• The angle θ between two planes $A_1x + B_1y + C_1z + D_1$ = 0 and $A_2x + B_2y + C_2z + D_2 = 0$ is given by

$$\theta = \cos^{-1} \left| \frac{A_1 A_2 + B_1 B_2 + C_1 C_2}{\sqrt{A_1^2 + B_1^2 + C_1^2} . \sqrt{A_2^2 + B_2^2 + C_2^2}} \right|$$

- In vector form the distance of a point whose position vector is \vec{a} , from the plane $\overset{\rightarrow}{r.n} = d$ is $(d - \vec{a}.\hat{n})$.
- The distance of a point (x_1, y_1, z_1) from the plane Ax +

By + Cz + D = is
$$\left| \frac{Ax_1 + By_1 + Cz_1 + D}{\sqrt{A^2 + B^2 + C^2}} \right|$$
.

■ Multiple Choice Questions

- 1. The direction cosines of z-axis are: (BSEB, 2013)
 - (a) 0, 0, 0
- $(b)^{-}1, 0, 0$
- (c) 0, 1, 0
- (d) 0, 0, 1
- 2. Equation of a plane not cuts the co-ordinate axis at (a, 0, 0) (0, b, 0) and (0, 0, c) is (BSEB, 2013) (a) ax + by + zr + d = 0(b) ax + by + zx = 0
- (c) $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 0$ (d) $\frac{x}{a} \frac{y}{b} \frac{z}{c} = 0$ 3. The distance between (4, 3, 7) and (1, -1, -5) is: (BSEB, 2013)
 - (a) 5
- (b) 5
- (c) 13
- (d) none of these

- 4. If O be the origin and the co-ordinates of p be (1, 2, -3), then the equation of the plane passing through p and perpendicular to OP is:
 - (a) x + 2y 3z 14 = 0
- (b) x + 2y + 3z = 14
- (c) x 2y + 3z = 14
- (d) x 2y 3z = 14
- 5. The direction cosines of the normal to the plane 2x - 3y - 6z - 3 = 0 are: (BSEB, 2010)
 - (a) $\frac{2}{7}$, $-\frac{3}{7}$, $-\frac{6}{7}$ (b) $\frac{2}{7}$, $\frac{3}{7}$, $\frac{6}{7}$
 - (c) $-\frac{2}{7}, \frac{3}{7}, -\frac{6}{7}$
- (d) none of these
- 6. The line $\frac{x-5}{3} = \frac{y+4}{7} = \frac{z-6}{9}$
- (BSEB, 2010)
- (a) passes through (5, -4, 6)
- (b) has direction cosines 3, 7, 2
- (c) is perpendicular to 3x + 7y 2z = 0
- (d) none of these
- 7. For a straight line having direction coming l, m, n, $l^2 + m^2 + n^2$: (BSEB, 2014)
 - (a) 0
- (b) 1
- (c) 1
- 8. The necessary condition for the line $\frac{x-x_1}{l} = \frac{y-y_1}{m}$
 - $=\frac{z-z_1}{n}$ to be parallel to the plane ax+by+cx+d=
 - (a) al + bn + cn = 0
- (b) al + bn + cm = 1
- (c) $\frac{l}{a} = \frac{m}{b} = \frac{n}{c}$
- (d) none of these
- 9. If a straight line makes equal angles with the co-ordinate axes, then its direction ratios are:
 - (a) 1, 2, 3
- (b) 3, 1, 2
- (c) 3, 2, 1
- (d) 1, 1, 1
- 10. The co-ordinates of the point, which is equidistant from the points (0, 0, 0), (a, 0, 0), (0, b, 0) and (0, 0, c) are:
- (a) $\left(\frac{a}{2}, \frac{b}{2}, \frac{c}{2}\right)$ (b) $\left(-\frac{a}{2}, \frac{b}{2}, \frac{c}{2}\right)$ (c) $\left(\frac{a}{2}, -\frac{b}{2}, \frac{c}{2}\right)$ (d) $\left(\frac{a}{2}, \frac{b}{2}, -\frac{c}{2}\right)$
- 11. The direction cosines of the y-axis are: (BSEB, 2015) (a) (0, 0, 0) (b) (1, 0, 0) (c) (0, 1, 0) (d) (0, 0, 1)
- 12. If the line $\frac{x-x_1}{l} = \frac{y-y_1}{m} = \frac{z-z_1}{n}$ is parallel to the plane ax + by + cz + d = 0, then: (BSEB, 2015)
 - (a) $\frac{a}{l} = \frac{b}{m} = \frac{c}{n}$
- (a) $\frac{a}{l} = \frac{b}{m} = \frac{c}{n}$ (b) al + bm + cn = 0 (c) $al^2 + bm^2 + cn^2 = 0$ (d) $a^2l^2 + b^2m^2 + c^2n^2 = 0$
- 13. If the planes $a_1x + b_1y + c_1z + d_1 = 0$ and $a_2x + b_2y + c_2z$ $+d_2 = 0$ are perpendicular to each other, then:

- (a) $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$ (b) $\frac{a_1}{a_2} + \frac{b_1}{b_2} + \frac{c_1}{c_2} = 0$ (c) $a_1 a_2 + b_1 b_2 + c_1 c_2 = 0$ (d) $a_1^2 a_2^2 + b_1^2 b_2^2 + c_1^2 c_2^2 = 0$

(d)
$$\frac{1}{5}$$

15. The directions ratios of the line joining the points (x_1, y_1, z_1) and (x_2, y_2, z_2) are: (BSEB, 2015)

(a)
$$x_1 + x_2, y_1 + y_2, z_1 + z_2$$

(b)
$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2+(z_1-z_2)^2}$$

(c)
$$\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}, \frac{z_1 + z_2}{2}$$

(d)
$$x_2 - x_1, y_2 - y_1, z_2 - z_1$$

16. The co-ordinates of the mid-point of the line segment joining the points (2, 3, 4) and (8, -3, 8) are:

(BSEB, 2015)

(a)
$$(10, 0, 12)$$
(b) $(5, 6, 0)$ (c) $(6, 5, 0)$ (d) $(5, 0, 6)$

17. If the direction cosines of two straight lines are l_1 , m_1 and l_2 , m_2 , n_2 then the cosine of the angle θ between them or $\cos\theta$ is : (BSEB, 2015)

(a)
$$(l_1 + m_1 + n_1) (l_2 + m_2 + n_2)$$

(b)
$$\frac{l_1}{l_2} + \frac{m_1}{m_2} + \frac{n_1}{n_2}$$

(c)
$$l_1 l_1 + m_1 m_2 + n_1 n_1$$

(d)
$$\frac{l_1 + m_1 + n_1}{l_2 + m_2 + n_2}$$

18. The direction ratios of the normal to the plane 7x + 4y - 2z + 5 = 0 are: (BSEB, 2015)
(a) 7, 4, 5 (b) 7, 4, -2 (c) 7, 4, 2 (d) 0, 0, 0

Ans. 1. (d), 2. (c), 3. (c), 4. (a), 5. (a), 6. (a), 7. (b), 8. (a), 9. (d), 10. (a), 11. (c), 12. (a), 13. (c), 14. (a), 15. (d),

Q. 1. If a line makes angles 90° , 60° and 30° with the positive direction of x, y and z-axis respectively, find its direction cosines.

(Raj, 2014; Uttrakhand, 2014)

Solution

$$l = \cos 90^{\circ} = 0, m = \cos 60^{\circ} = \frac{1}{2}, n = \cos 30^{\circ} = \frac{\sqrt{3}}{2}$$

 \therefore Direction cosines of the line are 0, $\frac{1}{2}$, $\frac{\sqrt{3}}{2}$.

Q. 2. Write the cartesian of the straight line through the point (α, β, γ) and parallel to z-axis.

[AI CBSE, 2014 (Comptt.)]

Solution

: Line is parallel to z-axis and d.c.'s of z-axis are 0, 0, 1

 \therefore D.C.'s of the line are 0, 0, 1

Also the line passes through the point (α, β, γ)

: Equations of the line are

$$\frac{x-\alpha}{0} = \frac{y-\beta}{0} = \frac{z-\gamma}{1}$$

Q. 3. Write the distance of a point p(a, b, c) from x-axis. [CBSE, 2014 (Comptt.)]

Solution

Let m be the foot of the perpendicular from p or XOY plane.

Let N be the foot OX the perpendicular from M on x-axis.

Then,
$$ON = a$$
, $NM = b$, $MP = c$

 \therefore Distance of p from x-axis = NP

$$= \sqrt{NM^2 + MP^2}$$
$$= \sqrt{b^2 + c^2}$$

Q. 4. If the cartesian equations of a line are:

$$\frac{3-x}{5} = \frac{y+4}{7} = \frac{2z-6}{4}$$
, write the vector equation for the line. (AI CBSE, 2014)

$$\frac{3-x}{5} = \frac{y+4}{7} = \frac{2z-6}{4}$$

$$\Rightarrow \frac{x-3}{-5} = \frac{y-(-4)}{7} = \frac{z-3}{2}$$

$$\therefore \quad \vec{a} = 3\hat{i} - \hat{j} + 3\hat{k}$$

$$\vec{b} = -5\hat{i} + 7\hat{j} + 3\hat{k}$$

: vector equation of the line is

$$\stackrel{\rightarrow}{r} = \stackrel{\rightarrow}{a} + \lambda \stackrel{\rightarrow}{b}$$

$$\Rightarrow \qquad \stackrel{\rightarrow}{r} = (3\,\hat{i}\,-4\,\hat{j}\,+3\,\hat{k}\,) + \lambda\,(-3\,\hat{i}\,+7\,\hat{j}\,+2\,\hat{k}\,)$$

where λ is a parameter.

Q. 5. Write the vector equation of a line passing through the point (1, -1, 2) and parallel to the line whose equations are

$$\frac{x-3}{1} = \frac{y-1}{2} = \frac{z+1}{-2}$$
 [CBSE, 2013 (Comptt.)]

Solution

Here,
$$\vec{a} = \hat{i} - \hat{j} + 2\hat{k}$$

$$\vec{b} = \hat{i} + 2\hat{j} - 2\hat{k}$$

Hence, the vector equation of the line is

$$\vec{r} = \vec{a} + \lambda \vec{b}$$

$$\Rightarrow \overrightarrow{r} = (\hat{i} - \hat{j} + 2\hat{k}) + (\hat{i} + 2\hat{j} - 2\hat{k})$$
where λ is a parameter.

Q. 6. Find the cartesian equations of the line which passes through the point (-2, 4, -5) and is parallel to the line

$$\frac{x+3}{3} = \frac{4-y}{5} = \frac{z+8}{6}$$
 (CBSE, 2013)

Solution

$$\frac{x+3}{3} = \frac{4-y}{5} = \frac{z+8}{6}$$

$$\Rightarrow \frac{x+3}{3} = \frac{y-4}{-5} = \frac{z+8}{6}$$

cartesian equation of the line are

$$\frac{x+2}{3} = \frac{y-4}{-5} = \frac{z+5}{6}$$

Q. 7. Find the equations of the straight line which passes through the point (0, -1, 4) and is parallel to the straight line.

$$\frac{-x-2}{1} = \frac{y+3}{7} = \frac{2z-6}{3}$$

$$\Rightarrow \frac{x+2}{-1} = \frac{y+3}{7} = \frac{z-3}{3/2}$$

$$\Rightarrow \frac{x+2}{-2} = \frac{y+3}{14} = \frac{z-3}{3}$$

Hence the equations of the required straight line are

$$\frac{x-0}{-2} = \frac{y+1}{14} = \frac{z-4}{3}$$

$$\Rightarrow \frac{x}{-2} = \frac{y+1}{14} = \frac{z-4}{3}$$

Q. 8. If a line has direction ratios 2, -1, -2, determine its direction cosines. (USEB, 2013) Solution

$$\sqrt{(2)^2 + (-1)^2 + (-2)^2} = \sqrt{9} = 3$$

.. Direction cosines are

$$\frac{2}{3}$$
, $-\frac{1}{3}$, $-\frac{2}{3}$

Q. 9. Find the direction cosines of the unit vec-

tor perpendicular to the plane \vec{r} . $(6\hat{i} - 3\hat{j} - 2\hat{k}) + 1 = 0$. (Raj Board,, 2013) Solution

A vector perpendicular the plane is $(6\hat{i} - 3\hat{j} - 2\hat{k})$

.. A unit vector perpendicular to the plane is

$$\frac{6\hat{i} - 3\hat{j} - 2\hat{k}}{\sqrt{(6)^2 + (-3)^2 + (-2)^2}}$$

$$= \frac{6\hat{i} - 3\hat{j} - 2\hat{k}}{7}$$

$$= \frac{6}{7}\hat{i} - \frac{3}{7}\hat{j} - \frac{2}{7}\hat{k}$$

 \therefore Direction cosines of the unit vector are $\frac{6}{7}$, $-\frac{3}{7}$,

Q. 10. Find the value of α , if the straight line $\frac{x-1}{2} = \frac{y-3}{4} = \frac{z-4}{\lambda}$ and $\frac{x-2}{1} = \frac{y-5}{3} = \frac{z-1}{-7}$ are perpendicular to each other. (JAC, 2014) Solution

If the given straight lines are perpendicular to each other, then

$$\begin{array}{c} a_{1}a_{2}+b_{1}b_{2}+c_{1}c_{2}=0\\ \Rightarrow (2)\,(1)+(4)\,(3)+(\lambda)\,(-7)=0\\ \Rightarrow \qquad \qquad 2+12-7\lambda=0\\ \Rightarrow \qquad \qquad 14-7\lambda=0\\ \Rightarrow \qquad \qquad 7\lambda=14\\ \Rightarrow \qquad \qquad \lambda=2 \end{array}$$

Q. 11. The lines
$$\frac{1-x}{3} = \frac{7y-14}{2p} = \frac{z-3}{2}$$
 and $\frac{7-7x}{3p}$

= $\frac{y-5}{1} = \frac{6-z}{5}$ are perpendicular to each other. Find the value of p. (Raj. Board., 2013) Solution

The given lines are

$$\frac{1-x}{3} = \frac{7y-14}{2p} = \frac{z-3}{2}$$

$$\Rightarrow \frac{x-1}{-3} = \frac{y-2}{2/7p} = \frac{z-3}{2} \qquad ...(1)$$
and $\frac{7-7x}{3p} = \frac{y-5}{1} = \frac{6-z}{5}$

$$\Rightarrow \frac{x-1}{-3/7p} = \frac{y-5}{1} = \frac{z-6}{-5} \qquad ...(2)$$

If the lines (1) and (2) are perpendicular to each other, then

$$a_{1}a_{2} + b_{1}b_{2} + c_{1}c_{2} = 0$$

$$\Rightarrow (-3)\left(-\frac{3}{7}p\right) + \left(\frac{2}{7}p\right)(1) + (2)(-5) = 0$$

$$\Rightarrow \frac{9p}{7} + \frac{2p}{7} - 10 = 0$$

$$\Rightarrow \frac{11p}{7} - 10 = 0$$

$$\Rightarrow \frac{11p}{7} = 10$$

$$\Rightarrow p = \frac{70}{11}$$

Q. 12. Find the acute angle between the planes 2x - y + z + 8 = 0 and x + y + 2z - 14 = 0. (BSEB, 2014) Solution

$$\cos \theta = \frac{(2)(1) + (-1)(1) + (1)(2)}{\sqrt{(2)^2 + (-1)^2 + (1)^2} \sqrt{(1)^2 + (1)^2 + (2)^2}}$$

$$= \frac{3}{6}$$

$$= \frac{3}{6} = \cos 60^{\circ}$$

 $\theta = 60^{\circ}$

Hence the required acute angle is 60°

Q. 13. Find the angle between the planes 2x + y - 2z = 5 and 3x - 6y - 2z = 7. (Raj. Board, 2014) Solution

$$\cos \theta = \frac{(2)(3) + (1)(-6) + (-2)(-2)}{\sqrt{(2)^2 + (1)^2 + (-2)^2} \sqrt{(3)^2 + (-6)^2 + (-2)^2}}$$

$$= \frac{4}{3 \times 7} = \frac{4}{21}$$

$$\Rightarrow \qquad \theta = \cos^{-1}\left(\frac{4}{21}\right)$$

Hence the required angle is $\cos^{-1}\left(\frac{4}{21}\right)$.

Q. 14. Find the angle between the lines $\frac{5-x}{3} = \frac{y+3}{-4}$, z = 7 and $\frac{x}{1} = \frac{1-y}{2} = \frac{z-6}{2}$. (JAC, 2013)

Solution

The given lines are

$$\frac{5-x}{3} = \frac{y+3}{-4} = \frac{z-7}{0}$$

$$\Rightarrow \frac{x-9}{-3} = \frac{y+3}{-4} = \frac{z-7}{0}$$
and
$$\frac{x}{1} = \frac{1-y}{2} = \frac{z-6}{2}$$

$$\Rightarrow \frac{x}{1} = \frac{y-1}{-2} = \frac{z-6}{2} \qquad ...(2)$$

$$\cos \theta = \frac{(-3)(1)+(-4)(-2)+(0)(2)}{\sqrt{(-3)^2+(-4)^2+(0)^2}\sqrt{(1)^2+(-2)^2+(2)^2}}$$

$$= \frac{5}{\sqrt{25}\sqrt{9}} = \frac{5}{5\times 3} = \frac{1}{3}$$

$$\Rightarrow \theta = \cos^{-1}\left(\frac{1}{3}\right)$$

Hence the required angle is $\cos^{-1} \begin{pmatrix} 1 \\ 3 \end{pmatrix}$.

Q. 15. Find the acute angle between two lines that have the direction ratios (1, 1, 0) and (2, 1, 2). Solution

$$\cos \theta = \frac{(1)(2) + (1)(1) + (0)(2)}{\sqrt{1^2 + 1^2 + 0^2} \sqrt{2^2 + 1^2 + 2^2}}$$
$$= \frac{2 + 1 + 0}{\sqrt{2} \times 3} = \frac{1}{\sqrt{2}}$$
$$\theta = 45^{\circ}$$

Hence the required acute angle is 45°.

Q. 16. Find the length of the perpendicular drawn from the origin to the plane 2x - 3y + 6z + 21 = 0. (AI CBSE, 2013)

Solution

 \Rightarrow

Length of the perpendicular

$$= \frac{2(0) - 3(0) + 6(0) + 21}{\sqrt{(2)^2 + (-3)^2 + (6)^2}} = \frac{21}{7}$$

= 3 units

➡ Short Answer Type Questions

Q. 1. Find the co-ordinates of the point where the line through the points A (3, 4, 1) and B (5, 1, 6) arises the xy-plane. (USEB, 2014) Solution

Equation of the line through the points A (3, 4, 1) and B (5, 1, 6) are :

$$\frac{x-3}{5-3} = \frac{y-4}{1-4} = \frac{z-1}{6-1}$$

$$\Rightarrow \frac{x-3}{2} = \frac{y-4}{-3} = \frac{z-1}{5}$$

Equation of xy-plane is z = 0.

If cosines the xy-plane at the point of which z = 0, therefore, putting z = 0 in the equation of the lines, then

$$\frac{x-3}{2} = \frac{y-4}{-3} = \frac{0-1}{5} = -\frac{1}{5}$$

$$x = 3 - \frac{2}{5} = \frac{13}{5}$$

$$y = 4 + \frac{3}{5} = \frac{23}{5}$$

Hence, the required point is $\left(\frac{13}{5}, \frac{23}{5}, 0\right)$

Q. 2. Show that the lines $\frac{5-x}{-4} = \frac{y-7}{4} = \frac{z+3}{-5}$ and

$$\frac{x-8}{7} = \frac{2y-8}{2} = \frac{z-5}{3}$$
 are coplanar. (CBSE, 2014)
Solution

The co-ordinate of coplanar is

$$\begin{vmatrix} 8-9 & 4-7 & 5-(-3) \\ 4 & 4 & -5 \\ 7 & 1 & 3 \end{vmatrix} = 0$$

The given lines are
$$\frac{5-x}{-4} = \frac{y-7}{4} = \frac{z+3}{-5}$$

and $\frac{x-8}{7} = \frac{2y-8}{2} = \frac{z-5}{3}$
 $\Rightarrow \frac{x-5}{4} = \frac{y-7}{4} = \frac{z+3}{-5}$
and $\frac{x-8}{7} = \frac{y-4}{1} = \frac{z-5}{3}$
 $\Rightarrow \begin{vmatrix} 3 & -3 & 8 \\ 4 & 4 & -5 \\ 7 & 1 & 3 \end{vmatrix} = 0$
 $\Rightarrow 3(12+5)-3(-35-12)+8(4-28)=0$
 $\Rightarrow 51+161-176=0$
 $\Rightarrow 0=0$, which is true Hence the given lines are coplanar.

Q. 3. Find the equation of the plane that contains the point (1, -1, 2) and is perpendicular to each of the planes 2x + 3y - 2z = 5 and x +2x - 3z = 8.(USEB, 2014) Solution

Any plane through the point (1, -1, 2) is given by A(x-1) + B(y+1) + C(z-2) = 0whose A, B, C are the d.v.'s of the normal to the plane : (1) is perpendicular to the plane

 \therefore (1) is perpendicular to the plane

$$x + 2y - 3z = 8$$
$$A + 2B - 3C = 0$$

$$\therefore A + 2B - 3C = 0 \qquad \dots (3)$$
Eliminating A. B. C. from (1), (2) and (3) determine

Eliminating A, B, C from (1), (2) and (3) determinantically, we get

$$\begin{vmatrix} x-1 & y-1 & z-2 \\ 2 & 3 & -2 \\ 1 & 2 & -3 \end{vmatrix} = 0$$

$$\Rightarrow (-9+4)(x-1) + (-2+6)(y-1) + (4-3)(z-2) = 0$$

$$\Rightarrow -9x + 5 + 4y - 4 + z - 2 = 0$$

$$\Rightarrow -9x + 4y + z = 1$$
which is the required equation of the plane.

Q. 4. Show that the line $\frac{x+3}{-3} = \frac{y-1}{1} = \frac{z-9}{5}$ and $\frac{x+1}{-1} = \frac{y-2}{2} = \frac{z-5}{5}$ are coplanar. [(USEB, 2013; CBSE, 13 (Comptt.)]

Solution

The co-ordinates of coplanar

$$\begin{vmatrix} (-1)-(-3) & 2-1 & 5-5 \\ -3 & 1 & 5 \\ -1 & 2 & 5 \end{vmatrix} = 0$$

$$\begin{vmatrix} 2 & 1 & 0 \\ -3 & 1 & 5 \\ -1 & 2 & 5 \end{vmatrix} = 0$$

$$\Rightarrow 2(5-10) + 1(-5+15) + 0(-6+1) = 0$$

\Rightarrow -10 + 10 + 0 = 0

0 = 0 which is true.

Hence the given lines are coplanar.

Q. 5. Write the vector equation of the plane passing through the point (a, b, c) and parallel to the plane $\vec{r} \cdot (\hat{i} + \hat{j} + \hat{k}) = 2$. Solution

Here, $\vec{d} = a\hat{i} + b\hat{i} + c\hat{k}$

$$\vec{n} = \hat{i} + \hat{j} + \hat{k}$$

: vector equation of the plane is

$$(\overrightarrow{r} - \overrightarrow{d}) \cdot \overrightarrow{n} = 0$$

$$\overrightarrow{r} \overrightarrow{h} - \overrightarrow{d} \cdot \overrightarrow{n} = 0$$

$$\Rightarrow \qquad \stackrel{\rightarrow}{r} \stackrel{\rightarrow}{n} = \stackrel{\rightarrow}{d} \stackrel{\rightarrow}{.} \stackrel{\rightarrow}{n}$$

$$\Rightarrow \overrightarrow{r} \cdot (\hat{i} + \hat{j} + \hat{k}) = (a\hat{i} + b\hat{j} + c\hat{k}) \cdot (\hat{i} + \hat{j} + \hat{k})$$

$$\Rightarrow \overrightarrow{r} \cdot (\hat{i} + \hat{j} + \hat{k}) = a + b + c$$

Q. 6. Find the vector and cartesian equation of the line passing through the point (2, 1, 3) and perpendicular to the lines

$$\frac{x-1}{1} = \frac{y-2}{2} = \frac{z-3}{3}$$
and $\frac{x}{3} = \frac{y}{3} = \frac{z}{5}$ (AI CBSE, 2014)

Solution

Let l, m, n be the d.c.'s of the line. : line is perpendicular to the lines

$$\frac{x-1}{1} = \frac{y-2}{2} = \frac{z-3}{3}$$
and
$$\frac{x}{-3} = \frac{y}{2} = \frac{z}{5}$$

$$l(1) + m(2) + n(3) = 0$$

$$l(-3) + m(2) + n(5) = 0$$

$$\frac{l}{10-6} = \frac{m}{-9-5} = \frac{n}{2+6}$$

$$\Rightarrow \qquad \frac{l}{4} = \frac{m}{-14} = \frac{n}{8}$$

$$\Rightarrow \qquad \frac{l}{2} = \frac{m}{-1} = \frac{n}{4} = \lambda \text{ (say)}$$

$$\Rightarrow \qquad \begin{array}{c} 2 & -1 & 4 \\ l = 2\lambda, m = -7\lambda, n = 4\lambda \end{array}$$

.. Equation of the line are

$$\frac{y-2}{2\lambda} = \frac{y-1}{-7\lambda} = \frac{z-3}{4\lambda}$$

$$\Rightarrow \frac{x-2}{2} = \frac{y-1}{-7} = \frac{z-3}{4}$$
Q. 7. Find the volume of p , so that the lines l_1 :

$$\frac{1-x}{3} = \frac{7y-14}{p} = \frac{z-3}{2} \text{ and } l_2 : \frac{7-7y}{3p} = \frac{y-5}{1} = \frac{b-z}{5}$$

are perpendicular to each other. Also find the equations of a line passing through a point (3, 2, -4) and parallel to line l_1 . (AI CBSE, 2014) Solution

The given lines are

$$\begin{split} l_1: \ \frac{1-x}{3} &= \frac{7y-14}{p} = \frac{z-3}{2} \\ \Rightarrow \quad l_1: \ \frac{1-x}{-3} &= \frac{y-2}{p/7} = \frac{z-3}{2} \\ \text{and} \quad l_2: \ \frac{7-7x}{3p} &= \frac{y-5}{1} = \frac{6-z}{5} \\ \Rightarrow \quad l_2: \ \frac{1-x}{-3/7p} &= \frac{y-5}{1} = \frac{z-6}{-5} \\ & \qquad \dots (2) \end{split}$$

If the lines l_1 and l_2 are perpendicular to each other,

$$(-3)\left(-\frac{3}{7}p\right) + \left(\frac{p}{7}\right)(-1) + (2)(-5) = 0$$

$$\Rightarrow \frac{9}{7}p + \frac{p}{7} - 10 = 0$$

$$\Rightarrow \frac{10p}{7} - 10 = 0$$

$$\Rightarrow 10p = 70$$

$$\Rightarrow p = 7$$

 \therefore DR's of line l_1 are -3, 1, 2.

Hence, the equation of a line passing through a point (3,2,-4) and parallel to the line h are $\frac{x-3}{-3} = \frac{y-2}{1} = \frac{z-2}{2}$

Q. 8. Find the vector equation of the plane through the points (2, 1, -1) and (-1, 3, 4) and perpendicular to the plane x - 2y + 4z = 10.

(AI CBSE, 2013)

Solution

Any plane through the point (2, 1, -1) is given by A(x-2) + B(y-1) + c(z+1) = 0whose A, B, C are the d.r.'s of the round to the plane. If plane (1) passes through the point (-1, 3, 4), then A(-1-2) + B(3-1) + C(4+1) = 0

$$A(-1-2) + B(3-1) + C(4+1) = 0$$

$$\Rightarrow A(-3) + B(2) + C(5) = 0$$

If plane (i) is perpendicular to the plane x - 2y + 4z =10, then

$$A(1) + B(-2) + C(4) = 0$$
 ...(3)

Eliminating A, B, C from (1), (2) and (3) determinantically, we get

$$\begin{vmatrix} x-2 & y-1 & z+1 \\ -3 & 2 & 5 \\ 1 & -2 & 4 \end{vmatrix} = 0$$

$$\Rightarrow (x-2)(8+10) + (y-1)(5+12) + (z+1)(6-2) = 0$$

$$\Rightarrow 18(x-2) + 17(y-1) + 4(z+1) = 0$$

$$\Rightarrow 18x + 17y + 4z = 49$$

Q. 9. The position vectors of the two points A and B are $3\hat{i} + \hat{j} + 2\hat{k}$ and $\hat{i} - 2\hat{j} - 4\hat{k}$ respectively. Find the vector equation of the plane passing through B and perpendicular to AB. Solution

Here,
$$\vec{d} = \hat{i} - 2\hat{j} - 4\hat{k}$$

 $\vec{n} = (\hat{i} - 2\hat{j} - 4\hat{k}) - (3\hat{i} + \hat{j} + 2\hat{k})$
 $= -2\hat{i} - 3\hat{j} - 6\hat{k}$

Hence, the vector equation of the required plane is

Hence, the vector equation of the required plane is
$$\Rightarrow (\stackrel{\rightarrow}{r} - \stackrel{\rightarrow}{d}).\stackrel{\rightarrow}{n} = 0$$

$$\Rightarrow \stackrel{\rightarrow}{r}.\stackrel{\rightarrow}{n} = \stackrel{\rightarrow}{d}.\stackrel{\rightarrow}{n}$$

$$\Rightarrow \stackrel{\rightarrow}{r}.(-2\hat{i} - 3\hat{j} - 6\hat{k}) = (\hat{i} - 2\hat{j} - 4\hat{k}).(-2\hat{i} - 3\hat{j} - 6\hat{k})$$

$$= -2 + 6 + 24 = 28$$

$$\Rightarrow \stackrel{\rightarrow}{r} .(2\hat{i} + 3\hat{j} + 6\hat{k}) + 28 = 0$$

Q. 10. Find the equation of the plane passing therefore the line of intersection of the planes \vec{r} . $(\hat{i} + \hat{j} + \hat{k}) = 1$ and $\vec{r} \cdot (2\hat{i} + 3\hat{j} - \hat{k}) + 4 = 0$ are [AI CBSE, 2014 (Comptt.)] parallel to x-axis. Solution

Any plane passing through the line of intersection of the planes

$$\vec{r} \cdot (\hat{i} + \hat{j} + \hat{k}) = 1$$
 ...(1)

 $\vec{r} \cdot (2\hat{i} + 3\hat{j} - \hat{k}) + 4 = 0$...(2) is given by

 \overrightarrow{r} . $(\hat{i} + \hat{j} + \hat{k}) - 1 + \lambda [\overrightarrow{r} . (2\hat{i} + 3\hat{j} - \hat{k}) + 4] = 0$ where λ is a parameter.

$$\Rightarrow_{i} \vec{r} \{ (1+2\lambda)\hat{i} + (1+3\lambda)\hat{j} + (1-\lambda)\hat{k} \} - 1 + 4\lambda = 0 \dots (3)$$

Here, $\vec{n} = (1 + 2\lambda)\hat{i} + (1 + 3\lambda)\hat{j} + (1 - \lambda)\hat{k}$

 \therefore DR's of the normal are $1 + 2\lambda$, $1 + 3\lambda$, $1 - \lambda$

 \therefore plane (3) is parallel to x-axis.

 \therefore Normal to the plane (3) is perpendicular to x-axis.

$$\therefore (1+2\lambda)(1) + (1+3\lambda)(0) + (1-\lambda) = 0$$

$$\Rightarrow 1+2\lambda = 0$$

$$\Rightarrow \qquad \qquad \lambda = -\frac{1}{2}$$

Putting the value of λ is (3), we get

$$\Rightarrow \qquad \overrightarrow{r} \left\{ -\frac{1}{2}\hat{j} + \frac{3}{2}\hat{k} \right\} - 3 = 0$$

$$\Rightarrow \qquad \overrightarrow{r} \left(-\hat{j} + 3\hat{k} \right) = 6$$

$$\Rightarrow \qquad \overrightarrow{r} \left(\hat{j} - 3\hat{k} \right) + 6 = 0$$

$$\Rightarrow \qquad (x\hat{i} + y\hat{j} + z\hat{k}) \cdot (\hat{j} - 3\hat{k}) + 6 = 0$$

$$\Rightarrow \qquad y - 3z + 6 = 0$$

Q. 11. Find the vector equation of the line passing through the point (1, 2, 3) and parallel to the planes $\vec{r} . (\hat{i} - \hat{j} + 2\hat{k}) = 5$ and $\vec{r} . (3\hat{i} + \hat{j} + \hat{k}) = 6$. (AI CBSE, 2013)

Solution

Let the line be parallel to the vector

$$\vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}$$

Since the line is parallel to the planes \vec{r} ($\hat{i} - \hat{j}$ + $(2\hat{k}) = 5$ and \vec{r} . $(3\hat{i} + \hat{j} + \hat{k}) = 6$, therefore the line will be perpendicular to the normal to each of these planes, therefore.

$$b_{1} - b_{2} + 2b_{3} = 0$$

$$3b_{1} + b_{2} + b_{3} = 0$$

$$\frac{b_{1}}{-1 - 2} = \frac{b_{2}}{6 - 1} = \frac{b_{3}}{1 + 3}$$

$$\Rightarrow \frac{b_{1}}{-3} = \frac{b_{2}}{5} = \frac{b_{3}}{4}$$

$$\vec{b} = -3\hat{i} + 5\hat{j} + 4\hat{k}$$

Hence, the vector equation of the required line is

$$\vec{r} = \vec{a} + \lambda \vec{b}$$

 $\stackrel{?}{\Rightarrow} \stackrel{\rightarrow}{r} = (\hat{i} + 2\hat{j} + 3\hat{k}) + \lambda(-3\hat{i} + 5\hat{j} + 4\hat{k})$ where λ is a parameter.

Q. 12. Show that the lines
$$\frac{x+1}{3} = \frac{y+3}{5} = \frac{z+5}{7}$$

and $\frac{x-2}{1} = \frac{y-4}{3} = \frac{z-6}{5}$ intersect. Also, find their point of intersection. (CBSE, 2014) Solution

The given lines are

$$\frac{x+1}{3} = \frac{y+3}{5} = \frac{z+5}{7} = r \text{ (say)}$$
 ...(1)

$$\frac{x-2}{1} = \frac{y-4}{3} = \frac{z-6}{5} = R \text{ (say)}$$
 ...(2)

Any point on line (1) is (-1 + 3r, -3 + 5r, -5 + 7r)

Any point on line (2) is (2 + R, 4 + 3R, 6 + 5R)

If lines (1) and (2) intersect, then at the point of intersection for some value of r and R, we have

$$-1 + 3r = 2 + R$$

$$-3 + 5r = 4 + 3R$$

$$-5 + 7r = 6 + 5R$$

$$3r - R = 3 \qquad ...(3)$$

$$5r - 3R = 7 \qquad ...(4)$$

$$7r - 5R = 11 \qquad ...(5)$$

Solving equations (3) and (4) for r and R, we get

$$r = \frac{1}{2}$$
, $R = -\frac{3}{2}$

These values of r and R satisfy equation (5) as

$$7\left(\frac{1}{2}\right) - 5\left(-\frac{3}{2}\right) = 11$$
 is true

Hence the given lines (1) and (2) intersect.

Point of intersection : Put $r = \frac{1}{2}$, we have

$$-1 + 3r = -1 + \frac{3}{2} = \frac{1}{2}$$

$$-3 + 5r = -3 + \frac{5}{2} = -\frac{1}{2}$$

$$-5 + 7r = -5 + \frac{7}{2} = -\frac{3}{2}$$

Hence the point of intersection is $\left(\frac{1}{2}, -\frac{1}{2}, -\frac{3}{2}\right)$

Q. 13. Find the vector and cartesian forms of the equation of the plane passig through the point (1, 2, -4) and parallel to the lines:

$$\vec{r} = \hat{i} + 2\hat{j} - 4\hat{k} + \lambda(2\hat{i} + 3\hat{j} + 6\hat{k})$$
 and $\vec{r} = \hat{i} - 3\hat{j} + 5\hat{k} + \mu(\hat{i} + \hat{j} - \hat{k})$. Also, find the distance of the point $(9, -8, -10)$ from the plane thus obtained. [CBSE, 2014 (Comptt.)]

Solution

Here,
$$\vec{d} = \hat{i} + 2\hat{j} - 4\hat{k}$$

 $\vec{r} = \vec{n}_1 \times \vec{n}_2$
 $= (2\hat{i} + 3\hat{j} + 6\hat{k}) \times (\hat{i} + \hat{j} - \hat{k})$
 $\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 3 & 6 \\ 1 & 1 & -1 \end{vmatrix}$
 $= (-3 - 6)\hat{i} + (6 + 2)\hat{j} + (2 - 3)\hat{k}$
 $= -9\hat{i} + 8\hat{j} - \hat{k}$

Hence, the equation of the required plane is

$$(\vec{r} - \vec{d}) \cdot \vec{n} = 0$$

$$\Rightarrow \vec{r} \cdot \vec{n} - \vec{d} \cdot \vec{n} = 0$$

$$\Rightarrow \vec{r} \cdot \vec{h} = \vec{d} \cdot \vec{h}$$

$$\Rightarrow \vec{r} \cdot (-9\hat{i} + 8\hat{j} - \hat{k}) = (\hat{i} + 2\hat{j} - 4\hat{k}) \cdot (-9\hat{i} + 8\hat{j} - \hat{k})$$

$$= (1) \times (-9) + (2) \cdot (8) + (-4) \cdot (-1)$$

$$= -9 + 16 + 4$$

$$= 11$$

$$\Rightarrow \stackrel{\rightarrow}{r} . (9\hat{i} - 8\hat{j} + \hat{k}) + 11 = 0$$
 ...(1)

which gives the vector form of the equation of the plane.

$$\Rightarrow (x\hat{i} + y\hat{j} + z\hat{k}).(9\hat{i} - 8\hat{j} + \hat{k}) + 11 = 0$$

$$\Rightarrow 9x - 8y + z + 11 = 0 \qquad ...(2)$$
which lines the cartesian form of the equation of the

which lines the cartesian form of the equation of the plane.

Distance of the point (9, -8, -10) from the plane (2)

$$= \frac{9(9) - 8(-8) + (10) + 11}{\sqrt{(9)^2 + (-8)^2 + (1)^2}}$$
$$= \frac{81 + 64 - 10 + 11}{\sqrt{81 + 64 + 1}} = \frac{146}{\sqrt{146}}$$
$$= \sqrt{146} \text{ units}$$

Q. 14. Find the distance between the point (7, 2, 4) and the plane determined by the points A (2, 5, -3), B (-2, -3, 5) and C (5, 3, -3). (CBSE, 2014) Solution

Any plane passing through the point A (2, 5, -3) is given by

$$a(x-2) + b(y-5) + c(z+3) = 0$$
 ...(1)

where a, b, c are the d.r.'s of the normal to the plane. If (1) passes through B (-2, -3, 5) and C (5, 3, 3), we

ve a(-2-2) + b(-3-5) + c(5+3) = 0

$$a (-2 - 2) + b (-3 - 3) + c (3 + 3) = 0$$

$$\Rightarrow -4a - 8b + 8c = 0 \qquad ...(2)$$
and, $a (5 - 2) + b (3 - 5) + c (-3 + 3) = 0$

$$\Rightarrow 3a - 2b + 0c = 0 \qquad ...(3)$$

eliminating a, b, c, eterminantically from equations (1), (2) and (3), we get

$$\begin{vmatrix} x-2 & y-5 & z+3 \\ -4 & -8 & 8 \\ 3 & -2 & 0 \end{vmatrix} = 0$$

$$\Rightarrow (0+16)(x-2) + (24-0)(y-5) + (8+24)(z+3) = 0$$

$$\Rightarrow 16(x-2) + 24(y-5) + 32(z+3) = 0$$

$$\Rightarrow 2(x-2) + 3(y-5) + 4(z+3) = 0$$

 \Rightarrow 2x + 3y + 4z - 7 = 0 which is the equation of the plane ABC.

Distance of the point (7, 2, 4) from this plane

$$= \frac{2(7) + 3(2) + 4(4) - 7}{\sqrt{2^2 + 3^2 + 4^2}}$$

$$= \frac{14 + 6 + 16 - 7}{\sqrt{4 + 9 + 16}}$$

$$= \frac{29}{\sqrt{29}} = \sqrt{29} \text{ units}$$

Q. 15. A line passes through (2, -1, 3) and is perpendicular to the lines $\vec{r} = (\hat{i} + \hat{j} - \hat{k}) + \lambda$ $(2\hat{i} - 2\hat{j} + \hat{k})$ and $\vec{r} = (2\hat{i} - \hat{j} - 3\hat{k}) + \mu (\hat{i} + 2\hat{j} + 2\hat{k})$, obtain its equations in vector and cartesian form.

(AI CBSE, 2014)

Solution

Here,
$$\vec{a} = 2\hat{i} - \hat{j} + 3\hat{k}$$

 $\vec{b} = \vec{n_1} \times \vec{n_2}$
 $= (2\hat{i} - 2\hat{j} + \hat{k}) \times (\hat{i} + 2\hat{j} + 2\hat{k})$
 $= \begin{vmatrix} i & j & k \\ 2 & -2 & 1 \\ 1 & 2 & 2 \end{vmatrix}$
 $= (-4 - 2)\hat{i} + (1 - 4)\hat{j} + (4 + 2)\hat{k}$
 $= -6\hat{i} - 3\hat{j} + 6\hat{k}$

Hence, the equation of the line in the vector form is $\vec{r} = \vec{a} + t \vec{b}$ [where t is a parameter,] $\vec{r} = (2\hat{i} - \hat{j} + 3\hat{k}) + \lambda(-6\hat{i} - 3\hat{j} - 6\hat{k})$ $\Rightarrow x\hat{i} + y\hat{j} + z\hat{k} = (2 - 6t)\hat{i} + (-1 - 3t)\hat{j} + (3 - 6t)\hat{k}$ Equating the coefficients of \hat{i} , \hat{j} , \hat{k} on both sides, we

get

$$x = 2 - 6t, y = -1 - 3t, z = 3 - 6t$$

$$\Rightarrow \frac{x - 2}{-6} = t$$

$$\frac{y + 1}{-3} = t$$

$$\frac{z - 3}{6} = t$$

$$\Rightarrow \frac{x - 2}{-6} = \frac{y + 1}{-3} = \frac{z - 3}{6}$$
which are the cartesian equation of the required line.

Q. 16. Find the value of $\hat{i}(\hat{j}\times\hat{k})+\hat{j}(\hat{k}\times\hat{i})+\hat{k}(\hat{i}\times\hat{j})$ (JAC, 2015)

Solution:

$$\begin{split} \hat{i} \, (\hat{j} \times \hat{k}) + \hat{j} \, (\hat{k} \times \hat{i}) + \hat{k} \, (\hat{i} \times \hat{j}) & [\\ & [\because \; \hat{j} \times \hat{i} = -\hat{k} \;, \; \hat{k} \times \hat{j} = -\hat{i} \;, \; \hat{i} \times \hat{k} = -\hat{j} \\ & \text{and} \; \; \hat{j} \times \hat{i} = -\hat{i} \times \hat{j} \;] \\ & = \; \hat{i} \, (\hat{i}) + \hat{j} \, . \, (\hat{j}) + \hat{k} \, . \, (\hat{k}) \\ & = \; 1 + 1 + 1 \qquad [\because \; \hat{i} \, . \, \hat{i} = \hat{j} \, . \, \hat{j} = \hat{k} \, . \, \hat{k} = 1 \,] \\ & = \; 3 \end{split}$$

Q. 17. Find the area of a parallelogram whose adjacent sides are the vectors $\vec{a} = \hat{i} - 2\hat{i} + 3\hat{k}$ and $\vec{b} = 2\hat{i} - \hat{j} + 4\hat{k}.$ (JAC, 2015)

Solution:

 \therefore Vector area of parallelogram = $\vec{a} \times \vec{b}$

$$= \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -2 & 3 \\ 2 & -1 & 4 \end{vmatrix}$$
$$= \hat{i} (8+3) - \hat{j} (4-6) + \hat{k} (-1+4)$$
$$= 11\hat{i} + 2\hat{j} + 3\hat{k}$$

:. Area of parallelogram

$$= |\vec{a} \times \vec{b}|$$

$$= |11\hat{i} + 2\hat{j} + 3\hat{k}|$$

$$= \sqrt{(11)^2 + (2)^2 + (3)^2}$$

$$= \sqrt{121 + 4 + 9}$$

$$= \sqrt{134} \text{ square units}$$

Q. 18. Find the angle between the vectors $\vec{a} = \hat{i} + \hat{j} + \hat{k}$ and $\vec{b} = \hat{i} + \hat{j} + \hat{k}$ (USEB, 2015) Solution:

Let the angle between two vectors is θ , then

$$\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$$

$$\cos \theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \cdot |\vec{b}|}$$

$$= \frac{(\hat{i} + \hat{j} + \hat{k}) \cdot (\hat{i} + \hat{j} - \hat{k})}{|\hat{i} + \hat{j} + \hat{k}| \cdot |\hat{i} + \hat{j} - \hat{k}|}$$

$$= \frac{(1 + 1 - 1)}{\left\{\sqrt{1^2 + 1^2 + 1^2}\right\} \left\{\sqrt{1^2 + 1^2 + (-1)^2}\right\}}$$

$$= \frac{1}{\sqrt{3} \cdot \sqrt{3}}$$

$$= \frac{1}{3}$$

$$\theta = \cos^{-1}\left(\frac{1}{3}\right)$$

Q. 19. A line has direction ratios 2, -1, -2 find the direction cosines. (USEB, 2015) Solution:

Since direction ratios are 2, -1, -2Thus, direction cosines will be

$$l = \frac{2}{\sqrt{2^2 + (-1)^2 (-2)^2}}, m = \frac{-1}{\sqrt{(2)^2 + (-1)^2 + (-2)^2}},$$
and $n = \frac{-2}{\sqrt{(2)^2 + (-1)^2 + (-2)^2}}$

$$\Rightarrow l = \frac{2}{\sqrt{4 + 4 + 1}}, m = \frac{-1}{\sqrt{4 + 1 + 4}}, n = \frac{-2}{\sqrt{4 + 1 + 4}}$$

$$\Rightarrow l = \frac{2}{3}, m = \frac{-1}{3}, n = \frac{-2}{3}$$

Q. 20. Find the equation of the straight line which passes through the point (1, -3, 2) and is parallel to the straight line $\frac{-x-1}{3} = \frac{y+4}{1} = \frac{2z-4}{2}$.

(JAC, 2015)

Solution:

Straight line
$$\frac{-x-1}{3} = \frac{y+4}{1} = \frac{2z-4}{2}$$

$$\Rightarrow \frac{x+1}{-3} = \frac{y+4}{1} = \frac{z-2}{1}$$

Hence, direction ratio will be -3, 1, 1. Direction cosines of line will be

$$l = \frac{-3}{\sqrt{(-3)^2 + 1^2 + 1^2}} \,, \, m = \frac{1}{\sqrt{(-3)^2 + 1^2 + 1^2}} \,,$$

and
$$n = \frac{1}{\sqrt{(-3)^2 + 1^2 + 1^2}}$$

$$\Rightarrow \qquad l = \frac{-3}{\sqrt{11}}, m = \frac{1}{\sqrt{11}}, n = \frac{1}{\sqrt{11}}$$

Hence, direction cosines are $\frac{-3}{\sqrt{11}}, \frac{1}{\sqrt{11}}, \frac{1}{\sqrt{11}}$

Required line equation of given line:

$$\frac{x-1}{-3} = \frac{y+3}{1} = \frac{z-2}{1}$$
Q. 21. If $\vec{a} = 2\hat{i} + \hat{j} - 2\hat{k}$, then evaluate $|\vec{a}|$.

(USEB, 2015)

Solution:

$$\vec{a} = 2\hat{i} + \hat{j} - 2\hat{k}$$

$$|\vec{a}| = |2\hat{i} + \hat{j} - 2\hat{k}|$$

$$= \sqrt{(2)^2 + (1)^2 + (-2)^2}$$

$$= \sqrt{4 + 1 + 4}$$

$$= \sqrt{9} = 3$$

Q. 22. Find the area of parallelogram whose adjacent sides are given by the vectors $\bar{a} = \hat{i} + \hat{j} + \hat{k}$ and $\bar{b} = 3\hat{i} + 2\hat{j} + \hat{k}$. (USEB, 2015) Solution:

 \therefore Vector area of parallelogram = $\overrightarrow{a} \times \overrightarrow{b}$

$$= \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 3 \\ 3 & 2 & 1 \end{vmatrix}$$
$$= \hat{i}(1-6) - \hat{j}(1-9) + \hat{k}(2-3)$$
$$= -5\hat{i} + 8\hat{j} - \hat{k}$$

Area of parallelogram

$$= |\vec{a} \times \vec{b}| = |-5\hat{i} + 8\hat{j} - \hat{k}|$$

$$= \sqrt{(-5)^2 + 8^2 + (-1)^2} = \sqrt{90} = 3\sqrt{10} \text{ square units}$$

Q. 23. Find the equations of the straight! e perpendicular to the two lines $\frac{x+1}{-3} = \frac{y-3}{2} = \frac{z+2}{1}$;

 $\frac{x}{1} = \frac{y-7}{-3} = \frac{z+7}{2}$ and passing through their point of intersection. (BSEB, 2015)

Solution:

Lines
$$\frac{x+1}{-3} = \frac{y-3}{2} = \frac{z+2}{1} = r_1$$
 ...(1)

and
$$\frac{x}{1} = \frac{y-7}{-3} = \frac{z+7}{2} = r_2$$
 ...(2)

On line (1) point, A (– $3r_1$ – 1, $2r_1$ + 3, r_1 – 2) and on line (2) point B (r_2 , – $3r_2$ + 7, $2r_2$ – 7).

from (1), Direction ratio of line, $a_1 = -3$, $a_2 = 2$, $a_3 = 1$ from (2), Direction ratio of line, $b_1 = 1$, $b_2 = -3$, $b_3 = 2$ Direction ratio of line passing through point A and B

$$\begin{aligned} \mathbf{C}_1 &= r_2 + 3r_1 + 1 \\ \mathbf{C}_2 &= -3r_2 + 7 - (2r_1 + 3) = -3r_2 - 2r_1 + 4 \\ \mathbf{C}_3 &= 2r_2 - 7 - (r_1 - 2) = 2r_2 - r_1 - 5 \end{aligned}$$

Line AB will be perpendicular to first line, if $a_1c_1 + a_2c_2 + a_3c_3 = 0$

$$\Rightarrow -3(r_2 + 3r_1 + 1) + 2(-3r_2 - 2r_1 + 4) + 1(2r_2 - r_1 - 5) \\ = 0$$

$$\begin{array}{ll} \Rightarrow & -7r_2 - 14r_1 = 0 \\ \Rightarrow & 7r_2 + 14r_1 = 0 \\ \Rightarrow & r_2 + 2r_1 = 0 \end{array}$$
 ...(3)

Line A and B will be perpendicular to second line if $b_1c_1 + b_2c_2 + b_3c_3 = 0$

$$\begin{array}{c} 1 & (r_{2} + 3r_{1} + 1) - 3 & (-3r_{2} - 2r_{1} + 4) + 2 & (2r_{2} - r_{1} - 5) = 0 \\ & 14r_{2} - 7r_{1} - 21 = 0 \\ \Rightarrow & 2r_{2} - r_{1} = 0 \end{array}$$
 ...(4)

Solving equations (3) and (4)

$$r_1 = \frac{-3}{5}$$
 and $r_2 = \frac{3}{5}$

A =
$$\left[-3 \times \frac{-3}{5} - 1, 2 \times \frac{-3}{5} + 3, \frac{-3}{5} - 2 \right]$$

$$=\left(\frac{4}{5},\frac{9}{5},\frac{-13}{5}\right)$$

$$B = \left[\frac{3}{5}, -3 \times \frac{3}{5} + 7, 2 \times \frac{3}{5} - 7 \right]$$

$$=\left(\frac{3}{5},\frac{6}{5},\frac{-29}{5}\right)$$

Hence, equation of line AB

$$\frac{x - \frac{4}{5}}{\frac{3}{5} \frac{4}{5}} = \frac{y - \frac{9}{5}}{\frac{6}{5} \frac{9}{5}} = \frac{z + \frac{13}{5}}{\frac{-29}{5} + \frac{13}{5}}$$

$$\Rightarrow$$

$$\frac{5x-4}{-1} = \frac{5y-9}{-3} = \frac{5z+13}{-16}$$

Q. 1. Find the equation of the plane perpendicular to the line joining the points (2, -1, 2) and (3, 2, -1, 3)-1) and passing through the point (4, -3, 1).

(JAC, 2013)

Solution:

Any plane passing through the point (4, -3, 1) is given

$$A(x-4) + B(y+3) + C(z-1) = 0$$
 ...(1)

where A, B, C are the direction ratio of the normal to the plane

DR's of the line joining the points (2, -1, 2) and (3, 2, -1, 3)-1)

$$= 3-2, 2+1, -1-2$$

= 1, 3, -3

Since the plane (1) is perpendicular to this line, therefore, the normal to this plane is parallel to this line.

So,
$$\frac{A}{1} + \frac{B}{3} + \frac{C}{-3} = \lambda \text{ (say)}$$

$$\Rightarrow$$

$$A = \lambda, B = 3\lambda, C = 3\lambda$$

Putting these values of A, B and C in equation (1), it reduces to

$$\lambda (x - 4) + 3\lambda (y + 3) - 3\lambda (z - 1) = 0$$

$$\Rightarrow$$
 $(x-4)+3(y+3)-3(z-1)=0$

$$\Rightarrow \qquad x - 4 + 3y + 9 - 3z + 3 = 0$$

$$\Rightarrow \qquad x + 3y - 3z + 8 = 0$$

which is the required equation of the plane.

Q. 2. Find the equations of the straight line per-

pendicular to the two lines $\frac{x+1}{-3} = \frac{y-3}{-2} = \frac{z+2}{1}$; $\frac{x}{1}$

= $\frac{y-7}{-3} = \frac{z+7}{2}$ and passing through their point of intersection. (BSEB, 2014)

Solution:

The given lines are

$$\frac{x+1}{-3} = \frac{y-3}{2} = \frac{z+2}{1} = r \text{ (say)} \qquad \dots (1)$$

$$\frac{x}{1} = \frac{y-7}{-3} = \frac{y+7}{2} = R \text{ (say)} \qquad ...(2)$$

Any point on line (1) is (-1-3r, 3+2r, -2+r)

Any point on line (2) is (R, 7-3R, -7+2R)

At the point of intersection for some values of r and R, we have

$$-1-3r = R$$

$$3 + 2r = 7 - 3R$$

$$-2 + r = -7 + 2R$$

$$\Rightarrow 3r + R = -1 \qquad ...(3)$$

$$2r + 3R = 4 \qquad ...(4)$$

$$r - 2R = -5 \qquad ...(5)$$

...(5)

Solving equations (3) and (4), we get,

$$r = -1, R = 2$$

These values of r and R satisfy equation (5).

Hence the lines (1) and (2) intersect. Their point of intersection is given by

$$(-1+3, 3-2, -2-1)$$
 or $(2, 1, -3)$

Let the d.c.'s of the line be l, m, n, since the line is perpendicular to (1) and (2) both, therefore

$$l(-3) + m(2) + n(1) = 0$$
 ...(6)

$$l(1) + m(-3) + n(2) = 0$$
 ...(7)

From (6) and (7),

$$\frac{l}{4+3} = \frac{m}{1+6} = \frac{n}{9-2}$$

$$\Rightarrow \qquad \frac{l}{7} = \frac{m}{7} = \frac{n}{7}$$

$$\Rightarrow \qquad \frac{l}{1} = \frac{m}{1} = \frac{n}{1}$$

:. DR's of the line are 1, 1, 1

Hence, the equation of the required line are

$$\frac{x-2}{1} = \frac{y-1}{1} = \frac{z+3}{1}$$

Q. 3. Find the image of the point (2, -1, 5) in the line $\frac{x-11}{10} = \frac{y+2}{-4} = \frac{z+8}{-11}$. Also, find the equations of the line joining the given point and its image. Find the length of that line segment also.

[CBSE, 2013 (Comptt.)]

Solution:

The given line is

$$\frac{x-11}{10} = \frac{y+2}{-4} = \frac{z+8}{-11} = r \text{ (say)}$$
 ...(1)

It passes through A (11, -2, -8) and has dr's 10, -4, -11

Let $p \to (2, -1, 5)$

Let M be the foot of the perpendicular drawn from point *p* to the line AB.

Any point on line (1) is (11 + 10r, -2 - 4r, -8 - 11r)For some value of r, it will represent the point M.

DR's of PM are 11 + 10r - 2, -2 - 4r + 1, -8 - 11r - 5i.e., 10r + 9, -4r - 1, -11r - 13

 $:: AB \perp PM$

$$\begin{array}{c} \therefore \ 10 \ (10r+9) - 4 \ (-4r-1) - 11 \ (-11r-13) = 0 \\ \Rightarrow \qquad 100r+90+16r+4+121r+143 = 0 \\ \Rightarrow \qquad \qquad 237r+237 = 0 \\ \Rightarrow \qquad \qquad r = -1 \\ \therefore \ \mathbf{M} = (11-10, -2+4, -8+11) \end{array}$$

 \Rightarrow M \rightarrow (1, 2, 3)

Let the image of the point P in the line (1) be θ (α , β ,

M is the mid-point of PQ

$$\therefore \frac{\alpha+2}{2} = 1$$

$$\frac{\beta-1}{2} = 2$$
and
$$\frac{\gamma+3}{2} = 5$$

$$\Rightarrow \alpha = 0, \beta = 5, \gamma = 7$$

Hence, the image point is (0, 5, 7)

Equations of the line joining the given point (2, -1, 5)and its image (0, 5, 7) and

$$\frac{x-2}{0-2} = \frac{y+1}{5-(-1)} = \frac{z-5}{7-5}$$

$$\Rightarrow \frac{x-2}{-2} = \frac{y+1}{6} = \frac{z-5}{2}$$

$$\Rightarrow \frac{x-2}{-1} = \frac{y+1}{3} = \frac{z-5}{1}$$

Also, length of the line segment:

$$= \sqrt{(2-0)^2 + (-1-5)^2 + (5-7)^2}$$
$$= \sqrt{4+36+4} = \sqrt{44}$$
$$= 2\sqrt{11} \text{ units}$$

Q. 4. Show that the lines $\vec{r} = (\hat{i} + \hat{j} - \hat{k}) +$ $\lambda (3\hat{i} - \hat{j})$ and $\vec{r} = (4\hat{i} - \hat{k}) + \mu(2\hat{i} + 3\hat{k})$ intersect. Also, find their point of intersection.

[CBSE, 2013, 14 (Comptt.)]

Solution:

The given lines are
$$\vec{r} = (\hat{i} + \hat{j} - \hat{k}) + \lambda(3\hat{i} - \hat{j}) \dots (1)$$
 and $\vec{r} = (4\hat{i} - \hat{k}) + \mu(2\hat{i} + 3\hat{k}) \quad (2)$

If the lines (1) and (2) intersect, then at the point of intersection for some values of λ and μ , we have

$$(\hat{i} + \hat{j} - \hat{k}) + \lambda(3\hat{i} - \hat{j}) = (4\hat{i} - \hat{k}) + \mu(2\hat{i} + 3\hat{k})$$

$$\Rightarrow (1 + 3\lambda)\hat{i} + (1 - \lambda)\hat{j} - \hat{k} = (4 + 2\mu)\hat{i} + (3\mu - 1)\hat{k}$$

Equating the coefficients of \hat{i} , \hat{j} and \hat{k} on both sides, we get

Solving equations (4) and (5), we see

$$\lambda = 1, \mu = 0$$

These values of λ and μ clearly satisfy equation (1). Hence the lines (1) and (2) intersect.

Their point of intersection is given by

$$(\hat{i} + \hat{j} - \hat{k}) + 1(3\hat{i} - \hat{j}) = 4\hat{i} - \hat{k}$$

Q. 5. Find the distance of the point (2, 12, 5) from the point of intersection of the line $\hat{r} = 2\hat{i} + 4\hat{j} + 2\hat{k}$ + $\lambda(3\hat{i} + 4\hat{j} + 2\hat{k})$ and the plane $\hat{r} \cdot (\hat{i} - 2\hat{j} + k) = 0$. (AI CBSE, 2014)

Solution:

The given line is
$$\vec{r} = 2\hat{i} - 4\hat{j} + 2\hat{k} + \lambda (3\hat{i} + 4\hat{j} + 2\hat{k})$$
...(1)

The equation of the plane is

$$\vec{r} \cdot (\hat{i} - 2\hat{j} + \hat{k}) = 0 \qquad \dots (2)$$

At the point of intersection of line (1) and plane (2), for some value of λ , the value of r from (1) and (2) will be the same.

$$\begin{array}{c} \therefore \ \{(2\hat{i}-4\hat{j}+2\hat{k})+\lambda(3\hat{i}+4\hat{j}+2\hat{k})\}\\ \hat{i}-2\hat{j}+\hat{k}=0\\ \Rightarrow \qquad (2+8+2)+\lambda\left(3-8+2\right)=0\\ \Rightarrow \qquad 12-3\lambda=0\\ \Rightarrow \qquad \lambda=4 \end{array}$$

Hence the points of intersection is:

$$2\hat{i} - 4\hat{j} + 2\hat{k} + 4(3\hat{i} + 4\hat{j} + 2\hat{k})$$

$$= 14\hat{i} + 12\hat{j} + 10\hat{k}$$

It represents the point (14, 12, 10)

Hence, the required distance

$$= \sqrt{(14-2)^2 + (12-12)^2 + (10-5)^2}$$
$$= \sqrt{144+0+25} = \sqrt{169}$$
$$= 13 \text{ units}$$

Q. 6. Find the distance of the point (-1, -5, -10) from the point of intersection of the line $\vec{r} = 2\hat{i} - \hat{j} + 2\hat{k} + \lambda \quad (3\hat{i} + 4\hat{j} + 2\hat{k})$ and the plane $\vec{r} \quad (\hat{i} - \hat{j} + \hat{k}) = 5$. [CBSE, 2014; AI CBSE, 2014 (Comptt.)] Solution:

The given line is

$$\vec{r} = 2\hat{i} - \hat{j} + 2\hat{k} + \lambda(3\hat{i} + 4\hat{j} + 2\hat{k})$$
 ...(1)

The equation of the plane is

$$\vec{r} \cdot (\hat{i} - \hat{j} + \hat{k}) = 5 \qquad \dots (2)$$

At the point of intersection of line (1) and plane (2), for some value of λ , the values of \vec{r} from (1) and (2) will be the same

$$\Rightarrow \{2i - j + 2k + \lambda(3i + 4j + 2k)\} (i - j + k) = 5$$

$$\Rightarrow (2 + 1 + 2) + \lambda(3 - 4 + 2) = 5$$

$$\Rightarrow 5 + \lambda = 5$$

$$\Rightarrow \lambda = 0$$

Hence, the point of intesection of line (1) and plane (2) is

$$2i - j + 2k$$

It represents the point (2, -1, 2)

: Required distance

$$= \sqrt{(2+1)^2 + (-1+5)^2 + (2+10)^2}$$

$$= \sqrt{9+16+144}$$

$$= \sqrt{169}$$
= 13 units

Q. 7. Find the equation of the plane through the line of intersection of the planes x + y + z = 1 and 2x + 3y + 4z = 5 which is perpendicular to the plane x - y + z = 0. Also find the distance of the plane obtained above from the orgin. (AI CBSE, 2014) Solution:

Any plane passing through the line of intersection of the planes x + y + z = 1 and 2x + 3y + 4z = 5 is given by $x + y + z - 1 + \lambda (2x + 3y + 4z - 5) = 0$ where λ is a parameter.

$$\Rightarrow$$
 $(1 + 2\lambda) r + (1 + 3\lambda)y + (1 + 4\lambda) z = 1 + 5\lambda$...(1)

If plane (1) is perpendicular the plane

$$\begin{array}{c} x-y+z=0 & ...(2) \text{ then} \\ (1+2\lambda)\,(1)+(1+3\lambda)\,(-1)+(1+4\lambda)\,(1)=0 \\ \Rightarrow & 1+2\lambda-1-3\lambda+1+4\lambda=0 \end{array}.$$

$$\Rightarrow 3\lambda + 1 = 0 \Rightarrow \lambda = -\frac{1}{3}$$

puting this value of λ in (1), we get

$$(x+y+z-1) - \frac{1}{3} (2x + 3y + 4z - 5) = 0$$

$$\Rightarrow 3(x+y+z-1) - (2x + 3y + 4z - 5) = 0$$

$$\Rightarrow x-z+2 = 0$$

which is the equation of the required plane. Distance of this plane from origin

$$= \frac{0 - 0 + 2}{\sqrt{(1)^2 + (-1)^2}}$$

$$= \frac{2}{\sqrt{2}}$$
$$= \sqrt{2} \text{ units}$$

Q. 8. Find the equation of the plane passing through the line of intersection of the planes $\vec{r} \cdot (\hat{i} + 3\hat{j}) - 6 = 0$ and $\vec{r} \cdot (3\hat{i} - \hat{j} - 4\hat{k}) = 0$, whose perpendicular distance from origin is unity.

[AI CBSE, 2013; CBSE, 2013 (Comptt.)]

Solution:

Any plane passing through the line of intersection of the planes $\vec{r} \cdot (\hat{i} + 3\hat{j}) - 6 = 0$ and $\vec{r} \cdot (3\hat{i} - \hat{j} - 4\hat{k}) = 0$ is given by:

 $\vec{r}.(\hat{i}+3\hat{j})=6+\lambda \ [\vec{r}.(3\hat{i}-\hat{j}-4\hat{k})]=0,$ where λ is a parameter.

$$\Rightarrow \stackrel{\rightarrow}{r}.[(3\lambda+1)\hat{i}+(3-\lambda)\hat{j}-4\lambda\hat{k}]-6=0 \qquad ...(1)$$

Its distance from (0) is 1

$$\therefore \left| \frac{\left[(3\lambda + 1) \ 0 + (3 - \lambda) \ 0 - 4\lambda \ (0) - 6 \right]}{\sqrt{(3\lambda + 1)^2 + (3 - \lambda)^2 - (4\lambda)^2}} \right| = 1$$

$$A \Rightarrow 6 = \sqrt{(3\lambda + 1)^2 + (3 - \lambda)^2 + (-4\lambda)^2}$$

Squaring, we get

$$36 = a\lambda^{2} + 6\lambda + 1 + 9 + \lambda^{2} - 6\lambda + 16\lambda^{2}$$

$$\Rightarrow 36 = 26\lambda^{2} + 10$$

$$\Rightarrow 26\lambda^{2} = 26$$

$$\Rightarrow \lambda^{2} = 1$$

$$\Rightarrow \lambda = \pm 1$$

when $\lambda = 1$, (1) gives

$$\vec{r} \cdot (4\hat{i} + 2\hat{j} - 4\hat{k}) - 6 = 0$$

$$\Rightarrow \qquad \overrightarrow{r}.(2\hat{i}+\hat{j}-3\hat{k})-3=0 \qquad ...(2)$$

when $\lambda = -1$, (1) gives

$$\vec{r} \cdot (-2\hat{i} + 4\hat{j} + 4\hat{k}) - 6 = 0$$

$$\Rightarrow \qquad \vec{r}.(-\hat{i} + 2\hat{j} + 2\hat{k}) - 3 = 0 \qquad ...(3)$$

(2) and (3) given the required planes.

Q. 9. Show that the lines:

$$\vec{r} = 3\hat{i} + 2\hat{j} - 4\hat{k} + \lambda(\hat{i} + 2\hat{j} + 2\hat{k}); \ \vec{r} = 5\hat{i} - 2\hat{j} + 2\hat{k} + 2\hat{$$

 $\mu(3\hat{i} + 2\hat{j} + 6\hat{k})$ are intersecting. Hence find their point of intersection. (AI CBSE, 2013) Solution:

The given lines are

$$\stackrel{\rightarrow}{r} = 3\hat{i} + 2\hat{j} - 4\hat{k} + \lambda(\hat{i} + 2\hat{j} + 2\hat{k})...(1)$$

and
$$\vec{r} = 5\hat{i} - 2\hat{j} + \mu(3\hat{i} + 2\hat{j} + 6\hat{k})$$
 ...(2)

If the lines (1) and (2) and intersecting, then at their point of intersection, for some values of λ and μ , the values of r from (1) and (2) will be the same. Hence, at the point of intersection, we have

 $3\hat{i} + 2\hat{j} - 4\hat{k} + \lambda (\hat{i} + 2\hat{j} + 2\hat{k}) = 5\hat{i} - 2\hat{j} + \mu (3\hat{i} + 2\hat{j} + 6\hat{k})$ $(3 + \lambda)\hat{i} + (2 + 2\lambda)\hat{j} + (4 + 2\lambda)\hat{k} = (5 + 3\mu)\hat{i} + (2\mu)\hat{i}$ $-2)\hat{j} + 6u\hat{k}$

 $_{\mathrm{eq}1}$ ating the coefficients of \hat{i} , \hat{j} , \hat{k} on both sides, we

get

$$3 + \lambda = 5 + 3\mu \qquad \qquad \dots (3)$$

$$2 + 2\lambda = 2\mu - 2 \qquad \dots (4)$$

$$-4 + 2\lambda = 6\mu \qquad \dots (5)$$

$$\lambda - 3\mu = 2 \qquad \dots (6)$$

$$\lambda - \mu = -2 \qquad \dots (7)$$

 $\lambda - 3\mu = +2$...(8)

Solving (7) and (8), we get

$$\lambda = -4, \mu = -2$$

These values of λ and μ satisfy (6).

Herice the lines (1) and (2) intersect.

Their point of intersection is given by:

$$3\hat{i} + 2\hat{j} - 4\hat{k} - 4(\hat{i} + 2\hat{j} + 2\hat{k}) = -\hat{i} - 6\hat{j} - 12\hat{k}$$

i.e. the point (-1, -6, -12).

0. Find the co-ordinates of the point whose the $\lim_{t \to 0} t$ through (3, -4, -5), (2, -3, 1) crosses the plane, passing through the points (2, 2, 1), (3, 0, 1) (CBSE, 2013) and (4, -1, 0). Solution:

Any plane passing through the point (2, 2, 1) is given

A(x-2) + B(y-2) + C(z-1) = 0...(1)where A, B, C are the direction ratios of the normal

If plane (1) passes through the points (3, 0, 1) and (4, 0, 1)-1,0).then

A(1) + B(-2) + C(0) = 0...(2)

and
$$A(2) + B(-3) + C(-1) = 0$$
 ...(3)

Eliminating A, B, C from (1), (2) and (3) determinantically, we get

$$\begin{vmatrix} x-2 & y-2 & z-1 \\ 1 & -2 & 0 \\ 2 & -3 & -1 \end{vmatrix} = 0$$

$$2(x-2) + (y-2) + (z-1) = 0$$

$$2x + y + z = 7$$

Equations of the line joining the points (3, -4, -5)and (2, -3, 1) are

$$\frac{x-3}{-1} = \frac{y+4}{1} = \frac{z+5}{6} = r \text{ (say)}$$

Any point on this line is (3-r, -4+r, -5+6r)

If it lies on (4), then

$$\frac{1}{2}(3-r) + (-4+r) + (-5+6r) = 7$$

$$6 - 2r - 4 + r - 5 + 6r = 7$$

$$rac{1}{2}$$

$$r =$$

Hence the point of intersection is (3-2, -4+2, -5+12) or (1, -2, 7)

Q. 11. Find the vector equation of the plane determined by the points A (3, -1, 2), B (5, 2, 4) and C(-1, -1, 6). Also, find the distance of point P (6, 5, 6)9) from this plane. (CBSE, 2013) Solution:

Any plane passing through A (3-1, 2) is given by a(x-3) + b(y+1) + c(z-2) = 0where a, b, c are the d.r.'s of the normal to the plane. If plane (1) passes through B and C, then

$$a(2) + b(3) + c(2) = 0$$
 ...(2)

$$a(-4) + b(0) + c(4) = 0$$
 ...(3)

Eliminating a, b, c determinantically from (1), (2) and (3), we get

$$\begin{vmatrix} x-3 & y+1 & z-2 \\ 2 & 3 & 2 \\ -4 & 0 & 4 \end{vmatrix} = 0$$

$$\Rightarrow 12(x-3) - 16(y+1) + 12(z-2) = 0$$

$$\Rightarrow 3(x-3) - 4(y+1) + 3(z-2) = 0$$

$$\Rightarrow 3x - 4y + 3z - 19 = 0 \qquad ...(4)$$

Its vector equation is \vec{r} . $(3\hat{i} - 4\hat{j} + 3\hat{k}) - 19 = 0...(5)$

Distance of (4) from
$$p = \frac{3(6) - 4(5) + 3(9) - 19}{\sqrt{(3)^2 + (-4)^2 + (3)^2}}$$

$$= \frac{18 - 20 + 27 - 19}{\sqrt{9 + 16 + 9}}$$

$$= \frac{6}{\sqrt{34}} \text{ units}$$

Q. 12. Find the vector equation of the plane passing through three points with position vactors $\hat{i} + \hat{j} - 2\hat{k}$, $2\hat{i} - \hat{j} + \hat{k}$ and $\hat{i} + 2\hat{j} + \hat{k}$. Also find the coordinates of the point of intersection of this plane

and the line
$$\vec{r} = 3\hat{i} - \hat{j} - \hat{k} + \lambda(2\hat{i} - 2\hat{j} + \hat{k})$$
.

(CBSE, 2013)

Solution:

Here,
$$\vec{a} = \hat{i} + \hat{j} - 2\hat{k}$$

$$\vec{b} = 2\hat{i} - \hat{j} + \hat{k}$$
and
$$\vec{c} = \hat{i} + 2\hat{j} + \hat{k}$$

$$\vec{b} \times \vec{c} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & -1 & 1 \\ 1 & 2 & 1 \end{vmatrix}$$

$$= -3\hat{i} - \hat{j} + 5\hat{k}$$

Equation of the plane is $(\overrightarrow{r} - \overrightarrow{a}) \cdot (\overrightarrow{b} \times \overrightarrow{c}) = 0$

$$\Rightarrow \{ \vec{r} - (\hat{i} + \hat{j} - 2\hat{k}) \}. (-3\hat{i} - \hat{j} + 5\hat{k}) = 0$$

$$\Rightarrow \vec{r} . (-3\hat{i} - \hat{j} + 5\hat{k}) = (\hat{i} + \hat{j} - 2\hat{k}). (-3\hat{i} - \hat{j} + 5\hat{k})$$

$$= -3 - 1 - 10$$

$$= -14$$

$$\Rightarrow \stackrel{\rightarrow}{r} .(3\hat{i} + \hat{j} - 5\hat{k}) = 14$$
 ...(1)

The line is $\vec{r} = 3\hat{i} - \hat{j} - \hat{k} + \lambda(2\hat{i} - 2\hat{j} + \hat{k})$...(2) The point of intersection of (1) and (2), we have

$$[3\hat{i} - \hat{j} - \hat{k} + \lambda (2\hat{i} - 2\hat{j} + \hat{k})].(3\hat{i} + \hat{j} - 5\hat{k}) = 14$$

$$\Rightarrow (9 - 1 + 5) + \lambda (6 - 2 - 5) = 14$$

$$\Rightarrow 13 - \lambda = 14$$

$$\Rightarrow \lambda = -1$$

Hence, the point of intersection of (1) and (2) is

$$3\hat{i} - \hat{j} - \hat{k} + (-1)(2\hat{i} - 2\hat{j} + \hat{k})$$

$$= \hat{i} + \hat{j} - 2\hat{k}$$

Q. 13. Find the equation of the plane which contains the line of intersection of the planes $\vec{r} \cdot (\hat{i} + 2\hat{j} + 3\hat{k}) - 4 = 0$ and $\vec{r} \cdot (2\hat{i} + \hat{j} - \hat{k}) + 5 = 0$ and which is perpendicular to the plane $\vec{r} \cdot (5\hat{i} + 3\hat{j} - 6\hat{k}) + 8 = 0$.

(RSEB, 2013; CBSE, 2013)
Solution:

Any plane through the line of intersection of the planes

$$\vec{r} \cdot (\hat{i} + 2\hat{j} + 3\hat{k}) - 4 = 0 \qquad ...(1)$$

and $\vec{r} \cdot (2\hat{i} + \hat{j} - \hat{k}) + 5 = 0$...(2) is given by

$$\vec{r} \cdot (\hat{i} + 2\hat{j} + 3\hat{k}) - 4 + \lambda [\vec{r} \cdot (2\hat{i} + \hat{j} - \hat{k}) + 5] = 0$$

$$\Rightarrow \stackrel{\rightarrow}{r} [(1+2\lambda)\hat{i} + (2+\lambda)\hat{j} + (3-\lambda)\hat{k}] + 5\lambda - 4 = 0 \dots (3)$$
 (3) is perpendicular to the plane

$$\overrightarrow{r}.(5\hat{i} + 3\hat{j} - 6\hat{k}) + 8 = 0 \qquad \dots(4)$$

$$\therefore (1 + 2\lambda)5 + (2 + \lambda)3 + (3 - \lambda)(-6) = 0$$

$$\Rightarrow \qquad 5 + 10\lambda + 6 + 3\lambda - 18 + 6\lambda = 0$$

$$\Rightarrow \qquad 19\lambda - 7 = 0$$

$$\Rightarrow \qquad \lambda = \frac{7}{10}$$

Putting this value of λ in (3), we get

$$\vec{r} \cdot \left\{ \left(1 + \frac{14}{19} \right) \hat{i} + \frac{45}{19} \hat{j} + \frac{50}{19} \hat{k} \right\} + \frac{35}{19} - 4 = 0$$

$$\Rightarrow \qquad \stackrel{\rightarrow}{r} . (33\hat{i} + 45\hat{j} + 50\hat{k}) - 41 = 0$$

which is the required equation of the plane.

Q. 14. Find the co-ordinates of the point where

the line $\frac{x-2}{3} = \frac{y+1}{4} = \frac{z-2}{2}$ intersects the plane x-y+z-5=0. Also, find the angle between the line and the plane. (CBSE, 2013) Solution:

The given line is

$$\frac{x-2}{3} = \frac{y+1}{4} = \frac{z-2}{2} = r \text{ (say)}$$

Any point on this line is (2 + 3r, -1 + 4r, 2 + 2r)

It lies on the plane

$$x-y+z-5 = 0, \text{ then}$$

$$2+3r-1-4r+2+2r-5 = 0$$

$$\Rightarrow -5r = 0$$

$$\Rightarrow r = 0$$

 \therefore the point of intersection is (2, -1, 2)Let the required angle be θ , then

$$\sin \theta = \frac{(3)(1) + 4(-1) + (2)(1)}{\sqrt{3^2 + 4^2 + 2^2} \sqrt{1^2 + (-1)^2 + 1^2}}$$

$$= \frac{1}{\sqrt{87}}$$

$$\theta = \sin^{-1} \left(\frac{1}{\sqrt{87}}\right)$$

Q. 15. Find the vector equation of the plane passing through the intersection of the planes $\vec{r}(\hat{i}+\hat{j}+\hat{k})=6$ and $\vec{r}(2\hat{i}+3\hat{j}+4\hat{k})=-5$ and the point (1, 1, 1). (USEB, 2013) Solution:

Any plane passing through the intersection of the planes $\vec{r} \cdot (\hat{i} + \hat{j} + \hat{k}) = 6$ and $\vec{r} \cdot (2\hat{i} + 3\hat{j} + 4\hat{k}) = -5$ is given by

 $\vec{r} \cdot (\hat{i} + \hat{j} + \hat{k}) - 6 + \lambda [\vec{r} \cdot (2\hat{i} + 3\hat{j} + 4\hat{k}) + 5] = 0 \dots (1)$ where λ is a parameter.

$$\Rightarrow \vec{r} . [(1+2\lambda)\hat{i} + (1+3\lambda)\hat{j} + (1+4\lambda)\hat{k}] + 5\lambda - 6 = 0$$
...(2)

If (2) passes through (1, 1, 1), i.e., $\hat{i} + \hat{j} + \hat{k}$, then

$$(\hat{i} + \hat{j} + \hat{k}) \cdot [(1 + 2\lambda)\hat{i} + (1 + 3\lambda)\hat{j} + (1 + 4\lambda)\hat{k}] + 5\lambda - 6 = 0$$

$$\Rightarrow 1 + 2\lambda + 1 + 3\lambda + 1 + 4\lambda + 5\lambda - 6 = 0$$

$$\Rightarrow 14\lambda = 3$$

Putting the value of λ in (2), we get

$$\vec{r} \cdot \left[\left(1 + \frac{3}{7} \right) \hat{i} + \left(1 + \frac{9}{14} \right) \hat{j} + \left(1 + \frac{6}{7} \right) \hat{k} \right] + \frac{15}{14} - 6 = 0$$

$$\Rightarrow \vec{r} \cdot \left[\frac{10}{7} \hat{i} + \frac{23}{14} \hat{j} + \frac{13}{7} \hat{k} \right] - \frac{69}{14} = 0$$

$$\Rightarrow \stackrel{\rightarrow}{r} .(20\,\hat{i} + 23\,\hat{j} + 26\,\hat{k}) - 69 = 0$$

which is the required vector equation of the plane.

Q. 16. Find vector equation of a plane passing through the intersection of the planes $\vec{r} \cdot (2\hat{i} + 2\hat{j} + 3\hat{k}) = 7$ and $\vec{r} \cdot (2\hat{i} + 5\hat{j} + 3\hat{k}) = 9$ and the point (2, 1, 3). (Raj. Board, 2014) Solution:

Any plane passing through the line of intersection of the planes

$$\vec{r} \cdot (2\hat{i} + 2\hat{j} + 3\hat{k}) = 7$$
 ...(1)

and
$$\vec{r} \cdot (2\hat{i} + 5\hat{j} + 3\hat{k}) = 9 \text{ is given by} \dots(2)$$

$$\vec{r}.(2\hat{i} + 2\hat{j} + 3\hat{k}) - 7 + \lambda [\vec{r}.(2\hat{i} + 5\hat{j} + 3\hat{k}) - 9] = 0 ...(3)$$
where λ is a parameter.

$$\Rightarrow \stackrel{\rightarrow}{r} . \left[(2 + 2\lambda) \, \hat{i} \right. + (2 + 5\lambda) \, \hat{j} \right. + (3 + 3\lambda) \, \hat{k} \, \big] = 7 + 9\lambda \quad ...(4)$$

If it passes through the point (2, 1 ,3) i.e., $2\hat{i} + \hat{j}$ +

 $3\hat{k}$, then

$$\Rightarrow (2\hat{i} + \hat{j} + 3\hat{k}) [(2 + 2\lambda)\hat{i} + (2 + 5\lambda)\hat{j} + (3 + 3\lambda)\hat{k}]$$

$$\Rightarrow 2(2 + 2\lambda) + 1(2 + 5\lambda) + 3(3 + 3\lambda) = 7 + 9\lambda$$

$$\Rightarrow 2(2+2\lambda) + 1(2+5\lambda) + 3(3+3\lambda) = 7+9\lambda$$

$$\Rightarrow 2 + 4\lambda + 2 + 5\lambda + 9 + 9\lambda = 7 + 9\lambda$$

$$\Rightarrow 2 + 4\lambda + 2 + 5\lambda + 9 + 9\lambda = 7 + 9\lambda$$

$$\lambda = -\frac{2}{3}$$
Putting the value of λ in (4)

Putting the value of λ in (4), we get

$$\vec{r} \cdot \left[\left(2 - \frac{4}{3} \right) \hat{i} + \left(2 - \frac{10}{3} \right) \hat{j} + (3 - 2) \hat{k} \right] = 7 - 6$$

$$\Rightarrow \qquad \vec{r} \cdot \left(\frac{2}{3} i - \frac{4}{3} j + \hat{k} \right) = 1$$

$$\Rightarrow \qquad \overrightarrow{r} \cdot (2\hat{i} - 4\hat{j} + 3\hat{k}) = 3$$

which is the required equation of the plane.

Q. 17. Find the shortest distance between the

lines
$$\frac{x+3}{-4} = \frac{y-6}{3} = \frac{z}{2}$$
 and $\frac{x+2}{-4} = \frac{y}{1} = \frac{z-7}{1}$.

Solution:

S.D. =
$$\frac{\begin{vmatrix} (-2) - (-3) & 0 - 6 & 7 - 0 \\ -4 & 3 & 2 \\ -4 & 1 & 1 \end{vmatrix}}{\sqrt{(3-2)^2 + (-8+4)^2 + (-4+12)^2}}$$
$$= \frac{\begin{vmatrix} 1 & -6 & 7 \\ -4 & 3 & 2 \\ -4 & 1 & 1 \end{vmatrix}}{\sqrt{1+16+64}}$$
$$= \frac{1(3-2) - 6(-8+4) + 7(-4+12)}{9}$$
$$= \frac{1+24+56}{9} = \frac{81}{9}$$
$$= 9 \text{ units}$$

Q. 18. Consider the equations of the straight lines given by:

$$\mathbf{L}_{1}: \stackrel{\rightarrow}{r} = (\hat{\boldsymbol{i}} + 2\hat{\boldsymbol{j}} + \hat{\boldsymbol{k}}) + \lambda(\hat{\boldsymbol{i}} - \hat{\boldsymbol{j}} + \hat{\boldsymbol{k}})$$

(JAC, 2014) Solution:

$$\vec{a}_{1} = \hat{i} + 2\hat{j} + \hat{k}$$

$$\vec{a}_{2} = 2\hat{i} - \hat{j} - \hat{k}$$

$$\vec{b}_{1} = \hat{i} - \hat{j} + \hat{k}$$
and
$$\vec{b}_{2} = 2\hat{i} + \hat{j} + 2\hat{k}$$

$$\vec{a}_{2} - \vec{a}_{1} = \hat{i} - 3\hat{j} - 2\hat{k}$$

$$\vec{b}_{1} \times \vec{b}_{2} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -1 & 1 \\ 2 & 1 & 2 \end{vmatrix}$$

$$= -3\hat{i} + 3\hat{k}$$
S.D.
$$= \begin{vmatrix} (\vec{b}_{1} \times \vec{b}_{2}) \cdot (\vec{a}_{2} - \vec{a}_{1}) \\ |\vec{b}_{1} \times \vec{b}_{2}| \end{vmatrix}$$

$$= \begin{vmatrix} (-3\hat{i} + 3\hat{k}) \cdot (\hat{i} - 3\hat{j} - 2\hat{k}) \\ |\sqrt{(-3)^{2} + (3)^{2}} \end{vmatrix}$$

$$= \begin{vmatrix} -3 + 0 - 6 \\ 3\sqrt{2} \end{vmatrix} = \begin{vmatrix} -3 \\ \sqrt{2} \end{vmatrix}$$

$$= \frac{3}{\sqrt{2}} \text{ units}$$

Q. 19. Find the shortest distance between the lines

$$\vec{r} = (4\hat{i} - \hat{j}) + \lambda(\hat{i} + 2\hat{j} - 3\hat{k}) \text{ and } \vec{r} = (\hat{i} - \hat{j} + 2\hat{k}) + \mu(2\hat{i} + 4\hat{j} - 5\hat{k}).$$
(BSEB, 2014)

Solution:

$$\overrightarrow{a_1} = 4\hat{i} - \hat{j}$$

$$\overrightarrow{a_2} = \hat{i} - \hat{j} + 2\hat{k}$$

$$\overrightarrow{b_1} = \hat{i} + 2\hat{j} - 3\hat{k}$$
and
$$\overrightarrow{b_2} = 2\hat{i} + 4\hat{j} - 5\hat{k}$$

$$\overrightarrow{a_2} - \overrightarrow{a_1} = -3\hat{i} + 2\hat{k}$$

$$\overrightarrow{b_1} \times \overrightarrow{b_2} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 - 3 \\ 2 & 4 - 5 \end{vmatrix}$$

$$= 2\hat{i} + 2\hat{j}$$

$$|\vec{b}_1 \times \vec{b}_2| = \sqrt{(2)^2 + (2)^2} = 2\sqrt{2}$$

Q. 20. Find the shortest distance between the two lines whose vector equations are $\vec{r} = (\hat{i} + 2\hat{j} + 3\hat{k}) + \lambda(\hat{i} - 3\hat{j} + 2\hat{k})$ and $\vec{r} = (4\hat{i} + 5\hat{j} + 6\hat{k}) + \mu(2\hat{i} + 3\hat{j} + \hat{k})$.

[CBSE, 2014 (Comptt.); USEB, 14]

Solution:

From:
$$\vec{a}_{1} = \hat{i} + 2\hat{j} + 3\hat{k}$$

$$\vec{a}_{2} = 4\hat{i} + 5\hat{j} + 6\hat{k}$$

$$\vec{b}_{1} = \hat{i} - 3\hat{j} + 2\hat{k}$$
and
$$\vec{b}_{2} = 2\hat{i} + 3\hat{j} + \hat{k}$$

$$\vec{a}_{2} - \vec{a}_{1} = 3\hat{i} + 3\hat{j} + 3\hat{k}$$

$$\vec{b}_{1} \times \vec{b}_{2} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -3 & 2 \\ 2 & 3 & 1 \end{vmatrix}$$

$$= -9\hat{i} + 3\hat{j} + 9\hat{k}$$

$$|\vec{b}_{1} \times \vec{b}_{2}| = \sqrt{(-9)^{2} + (3)^{2} + (9)^{2}}$$

$$= \sqrt{81 + 9 + 81} = \sqrt{171}$$

$$= 3\sqrt{19}$$
S.D.
$$= \begin{vmatrix} (\vec{b}_{1} \times \vec{b}_{2}) \cdot (\vec{a}_{2} - \vec{a}_{1}) \\ |\vec{b}_{1} \times \vec{b}_{2}| \end{vmatrix}$$

$$= \begin{vmatrix} (-9\hat{i} + 3\hat{j} + 9\hat{k}) \cdot (3\hat{i} + 3\hat{j} + 3\hat{k}) \\ 3\sqrt{19} \end{vmatrix}$$

$$= \begin{vmatrix} (-27 + 9 + 27) \\ 3\sqrt{19} \end{vmatrix} = \begin{vmatrix} 3 \\ \sqrt{19} \end{vmatrix}$$
square units.

Q. 1. Find the equation of plane passing through the point (-1, 3, 2) and \bot to each of the planes and x+2y+3z=5 and 3x+3y+z=0.

(CBSE, Delhi and USEB, 2009)

Solution:

Equation of plane passing through the point (-1, 3, 2) a(x+1)+b(y-3)+c(z-2)=0 ...(1)

Plane (1) is perpendicular to planes x + 2y + 3z = 5, 3x + 3y + z = 0.

Thus a + 2b + 3c = 0 ...(2) and 3a + 3b + c = 0 ...(3)

Solving eqs. (2) and (3),

$$\frac{a}{2-9} = \frac{b}{9-1} = \frac{c}{3-6} = \lambda$$
 (Let)

$$\Rightarrow \frac{a}{-7} = \frac{b}{8} = \frac{c}{-3} = \lambda$$

$$\Rightarrow \qquad \qquad \alpha = -7\lambda, \, b = 8\lambda, \, c = -3\lambda$$

Required equation of plane

$$-7\lambda (x + 1) + 8\lambda (y - 3) - 3\lambda (z - 2) = 0$$

$$\Rightarrow -7 (x + 1) + 8 (y - 3) - 3 (z - 2) = 0$$

$$a = -7x + 8y - 3z = 25.$$

Q. 2. The cartesian equation of a line are

$$\frac{x-5}{3} = \frac{y+4}{7} = \frac{z-6}{2}$$
, write its vector form.

Solution

Equations of given lines are

$$\frac{x-5}{3} = \frac{y+4}{7} = \frac{x-6}{2}$$

show that the given line passes through the point A (5, -4, 6) and parallel to the vector $\stackrel{\rightarrow}{m} = 3 \stackrel{\widehat{i}}{i} + 7 \stackrel{\widehat{j}}{j} + 2 \stackrel{\widehat{k}}{k}$:

P.V. of A,
$$\vec{r_1} = 5 \hat{i} - 4 \hat{j} + 6 \hat{k}$$

.. Vector equation of given line

$$\vec{r} = \vec{r_1} + \lambda \vec{m}$$

$$\vec{r} = (5\hat{i} - 4\hat{j} + 6\hat{k}) + \lambda(3\hat{i} + 7\hat{j} + 2\hat{k}).$$

 ${f Q.}$ 3. Find the S.D. between the lines whose vector equations are :

and
$$\vec{r} = (1-t) \hat{i}_{+} (t-2) \hat{j}_{+} (3-2t) \hat{k}$$

 $\vec{r} = (s+1) \hat{i}_{+} (2s-1) \hat{j}_{-} (2s+1) \hat{k}$
Solution:

Given equation written as

$$\vec{r} = (\hat{i} - 2\hat{j} + 3\hat{k}) + t(-\hat{i} + \hat{j} - 2\hat{k})$$
and
$$\vec{r} = (\hat{i} - 2\hat{j} - \hat{k}) + s(\hat{i} + 2\hat{j} - 2\hat{k})$$

Comparing with $\overrightarrow{r} = \overrightarrow{r_1} + \overrightarrow{tu}$.

and
$$\overrightarrow{r} = \overrightarrow{r_2} + \overrightarrow{su},$$

$$\overrightarrow{r_1} = (\hat{i} - 2\hat{j} + 3\hat{k}), \overrightarrow{r_2} = (\hat{i} - \hat{j} - \hat{k})$$

$$\overrightarrow{u} = (-\hat{i} + \hat{j} - 2\hat{k}) \text{ and } \overrightarrow{u} = (\hat{i} + 2\hat{j} - 2\hat{k})$$

$$\overrightarrow{(r_2 - r_1)} = (\hat{i} - \hat{j} - \hat{k}) - (\hat{i} - 2\hat{j} + 3\hat{k})$$

$$= \hat{j} - 4\hat{k}$$